
Liquid Time-constant Networks

Ramin Hasani,1,3* Mathias Lechner,2* Alexander Amini,1 Daniela Rus,1 Radu Grosu3

1 Massachusetts Institute of Technology (MIT)
2 Institute of Science and Technology Austria (IST Austria)

3 Technische Universitaẗ Wien (TU Wien)
rhasani@mit.edu, mathias.lechner@ist.ac.at, amini@mit.edu, rus@csail.mit.edu, radu.grosu@tuwien.ac.at

Abstract

We introduce a new class of time-continuous recurrent neural
network models. Instead of declaring a learning system’s dy-
namics by implicit nonlinearities, we construct networks of
linear first-order dynamical systems modulated via nonlinear
interlinked gates. The resulting models represent dynamical
systems with varying (i.e., liquid) time-constants coupled to
their hidden state, with outputs being computed by numeri-
cal differential equation solvers. These neural networks ex-
hibit stable and bounded behavior, yield superior expressivity
within the family of neural ordinary differential equations,
and give rise to improved performance on time-series predic-
tion tasks. To demonstrate these properties, we first take a
theoretical approach to find bounds over their dynamics, and
compute their expressive power by the trajectory length mea-
sure in a latent trajectory space. We then conduct a series of
time-series prediction experiments to manifest the approxi-
mation capability of Liquid Time-Constant Networks (LTCs)
compared to classical and modern RNNs.1

1 Introduction
Recurrent neural networks with continuous-time hidden
states determined by ordinary differential equations (ODEs),
are effective algorithms for modeling time series data that
are ubiquitously used in medical, industrial and business set-
tings. The state of a neural ODE, x(t) ∈ RD, is defined by
the solution of this equation (Chen et al. 2018): dx(t)/dt =
f(x(t), I(t), t, θ), with a neural network f parametrized by
θ. One can then compute the state using a numerical ODE
solver, and train the network by performing reverse-mode
automatic differentiation (Rumelhart, Hinton, and Williams
1986), either by gradient descent through the solver (Lech-
ner et al. 2019), or by considering the solver as a black-box
(Chen et al. 2018; Dupont, Doucet, and Teh 2019; Gholami,
Keutzer, and Biros 2019) and apply the adjoint method (Pon-
tryagin 2018). The open questions are: how expressive are
neural ODEs in their current formalism, and can we improve
their structure to enable richer representation learning and
expressiveness?

*Authors with equal contributions
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code and data are available at: https://github.com/raminmh/
liquid time constant networks

Rather than defining the derivatives of the hidden-state
directly by a neural network f , one can determine a more
stable continuous-time recurrent neural network (CT-RNN)
by the following equation (Funahashi and Nakamura 1993):
dx(t)
dt = − x(t)

τ + f(x(t), I(t), t, θ), in which the term − x(t)
τ

assists the autonomous system to reach an equilibrium state
with a time-constant τ . x(t) is the hidden state, I(t) is the
input, t represents time, and f is parametrized by θ.

We propose an alternative formulation: let the hidden state
flow of a network be declared by a system of linear ODEs of
the form: dx(t)/dt = −x(t)/τ + S(t), and let S(t) ∈ RM
represent the following nonlinearity determined by S(t) =
f(x(t), I(t), t, θ)(A−x(t)), with parameters θ andA. Then,
by plugging in S into the hidden states equation, we get:

dx(t)

dt
=−

[1

τ
+ f(x(t), I(t), t, θ)

]
x(t)+

f(x(t), I(t), t, θ)A.
(1)

Eq. 1 manifests a novel time-continuous RNN instance
with several features and benefits:
Liquid time-constant. A neural network f not only de-
termines the derivative of the hidden state x(t), but also
serves as an input-dependent varying time-constant (τsys =

τ
1+τf(x(t),I(t),t,θ)) for the learning system (Time constant is
a parameter characterizing the speed and the coupling sen-
sitivity of an ODE).This property enables single elements
of the hidden state to identify specialized dynamical sys-
tems for input features arriving at each time-point. We re-
fer to these models as liquid time-constant recurrent neural
networks (LTCs). LTCs can be implemented by an arbitrary
choice of ODE solvers. In Section 2, we introduce a practical
fixed-step ODE solver that simultaneously enjoys the stabil-
ity of the implicit Euler and the computational efficiency of
the explicit Euler methods.
Reverse-mode automatic differentiation of LTCs. LTCs
realize differentiable computational graphs. Similar to neu-
ral ODEs, they can be trained by variform of gradient-based
optimization algorithms. We settle to trade memory for nu-
merical precision during a backward-pass by using a vanilla
backpropagation through-time algorithm to optimize LTCs
instead of an adjoint-based optimization method (Pontrya-
gin 2018). In Section 3, we motivate this choice thoroughly.

ar
X

iv
:2

00
6.

04
43

9v
4

 [
cs

.L
G

]
 1

4
D

ec
 2

02
0

https://github.com/raminmh/liquid_time_constant_networks
https://github.com/raminmh/liquid_time_constant_networks

Bounded dynamics - stability. In Section 4, we show that
the state and the time-constant of LTCs are bounded to a fi-
nite range. This property assures the stability of the output
dynamics and is desirable when inputs to the system relent-
lessly increase.
Superior expressivity. In Section 5, we theoretically and
quantitatively analyze the approximation capability of LTCs.
We take a functional analysis approach to show the univer-
sality of LTCs. We then delve deeper into measuring their
expressivity compared to other time-continuous models. We
perform this by measuring the trajectory length of activa-
tions of networks in a latent trajectory representation. Tra-
jectory length was introduced as a measure of expressivity
of feed-forward deep neural networks (Raghu et al. 2017).
We extend these criteria to the family of continuous-time re-
current models.
Time-series modeling. In Section 6, we conduct a series
of eleven time-series prediction experiments and compare
the performance of modern RNNs to the time-continuous
models. We observe improved performance on a majority of
cases achieved by LTCs.
Why this specific formulation? There are two primary jus-
tifications for the choice of this particular representation:
I) LTC model is loosely related to the computational mod-
els of neural dynamics in small species, put together with
synaptic transmission mechanisms (Hasani et al. 2020). The
dynamics of non-spiking neurons’ potential, v(t), can be
written as a system of linear ODEs of the form (Lapicque
1907; Koch and Segev 1998): dv/dt = −glv(t) + S(t),
where S is the sum of all synaptic inputs to the cell from
presynaptic sources, and gl is a leakage conductance.

All synaptic currents to the cell can be approximated
in steady-state by the following nonlinearity (Koch and
Segev 1998; Wicks, Roehrig, and Rankin 1996): S(t) =
f(v(t), I(t)), (A − v(t)), where f(.) is a sigmoidal nonlin-
earity depending on the state of all neurons, v(t) which are
presynaptic to the current cell, and external inputs to the cell,
I(t). By plugging in these two equations, we obtain an equa-
tion similar to Eq. 1. LTCs are inspired by this foundation.
II) Eq. 1 might resemble that of the famous Dynamic Causal
Models (DCMs) (Friston, Harrison, and Penny 2003) with a
Bilinear dynamical system approximation (Penny, Ghahra-
mani, and Friston 2005). DCMs are formulated by tak-
ing a second-order approximation (Bilinear) of the dynam-
ical system dx/dt = F (x(t), I(t), θ), that would result in
the following format (Friston, Harrison, and Penny 2003):
dx/dt = (A + I(t)B)x(t) + CI(t) with A = dF

dx , B =
dF 2

dx(t)dI(t) , C = dF
dI(t) . DCM and bilinear dynamical sys-

tems have shown promise in learning to capture complex
fMRI time-series signals. LTCs are introduced as variants of
continuous-time (CT) models that are loosely inspired by bi-
ology, show great expressivity, stability, and performance in
modeling time series.

2 LTCs forward-pass by a fused ODE solvers
Solving Eq. 1 analytically, is non-trivial due to the nonlinear-
ity of the LTC semantics. The state of the system of ODEs,
however, at any time point T , can be computed by a numeri-

Algorithm 1 LTC update by fused ODE Solver

Parameters: θ = {τ (N×1) = time-constant, γ(M×N) =
weights, γ(N×N)

r = recurrent weights, µ(N×1) = biases},
A(N×1) = bias vector, L = Number of unfolding steps,
∆t = step size, N = Number of neurons,
Inputs: M -dimensional Input I(t) of length T , x(0)
Output: Next LTC neural state xt+∆t

Function: FusedStep(x(t), I(t), ∆t, θ)
x(t+ ∆t)(N×T) = x(t) + ∆tf(x(t),I(t),t,θ)�A

1+∆t
(

1/τ+f(x(t),I(t),t,θ)
)

. f(.), and all divisions are applied element-wise.

. � is the Hadamard product.
end Function
xt+∆t = x(t)
for i = 1 . . . L do

xt+∆t = FusedStep(x(t), I(t), ∆t, θ)
end for
return xt+∆t

cal ODE solver that simulates the system starting from a tra-
jectory x(0), to x(T). An ODE solver breaks down the con-
tinuous simulation interval [0, T] to a temporal discretiza-
tion, [t0, t1, . . . tn]. As a result, a solver’s step involves only
the update of the neuronal states from ti to ti+1.

LTCs’ ODE realizes a system of stiff equations (Press
et al. 2007). This type of ODE requires an exponential num-
ber of discretization steps when simulated with a Runge-
Kutta (RK) based integrator. Consequently, ODE solvers
based on RK, such as Dormand–Prince (default in torchd-
iffeq (Chen et al. 2018)), are not suitable for LTCs. There-
fore, We design a new ODE solver that fuses the explicit and
the implicit Euler methods (Press et al. 2007). This choice
of discretization method results in achieving stability for
an implicit update equation. To this end, the Fused Solver
numerically unrolls a given dynamical system of the form
dx/dt = f(x) by:

x(ti+1) = x(ti) + ∆tf(x(ti), x(ti+1)). (2)

In particular, we replace only the x(ti) that occur linearly
in f by x(ti+1). As a result, Eq 2 can be solved for x(ti+1),
symbolically. Applying the Fused solver to the LTC repre-
sentation, and solving it for x(t+ ∆t), we get:

x(t+ ∆t) =
x(t) + ∆tf(x(t), I(t), t, θ)A

1 + ∆t
(
1/τ + f(x(t), I(t), t, θ)

) . (3)

Eq. 3 computes one update state for an LTC network. Cor-
respondingly, Algorithm 1 shows how to implement an LTC
network, given a parameter space θ. f is assumed to have
an arbitrary activation function (e.q. for a tanh nonlinear-
ity f = tanh(γrx + γI + µ)). The computational com-
plexity of the algorithm for an input sequence of length
T is O(L × T), where L is the number of discretization
steps. Intuitively, a dense version of an LTC network with
N neurons, and a dense version of a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) network
with N cells, would be of the same complexity.

Algorithm 2 Training LTC by BPTT

Inputs: Dataset of traces [I(t), y(t)] of length T , RNN-
cell = f(I, x)
Parameter: Loss func L(θ), initial param θ0, learning
rate α, Output w = Wout, and bias = bout
for i = 1 . . . number of training steps do

(Ib,yb) = Sample training batch, x := xt0 ∼ p(xt0)
for j = 1 . . . T do
x = f(I(t), x), ŷ(t) = Wout.x + bout, Ltotal =∑T
j=1 L(yj(t), ŷj(t)), ∇L(θ) = ∂Ltot

∂θ

θ = θ − α∇L(θ)
end for

end for
return θ

Table 1: Complexity of the vanilla BPTT compared to the
adjoint method, for a single layer neural network f

Vanilla BPTT Adjoint
Time O(L× T × 2) O((Lf + Lb) × T)

Memory O(L× T) O(1)
Depth O(L) O(Lb)

FWD acc High High
BWD acc High Low

Note: L = number of discretization steps, Lf = L during forward-pass. Lb = L during
backward-pass. T = length of sequence, Depth = computational graph depth.3 Training LTC networks by BPTT
Neural ODEs were suggested to be trained by a constant
memory cost for each layer in a neural network f by apply-
ing the adjoint sensitivity method to perform reverse-mode
automatic differentiation (Chen et al. 2018). The adjoint
method, however, comes with numerical errors when run-
ning in reverse mode. This phenomenon happens because
the adjoint method forgets the forward-time computational
trajectories, which was repeatedly denoted by the commu-
nity (Gholami, Keutzer, and Biros 2019; Zhuang et al. 2020).

On the contrary, direct backpropagation through time
(BPTT) trades memory for accurate recovery of the forward-
pass during the reverse mode integration (Zhuang et al.
2020). Thus, we set out to design a vanilla BPTT algo-
rithm to maintain a highly accurate backward-pass inte-
gration through the solver. For this purpose, a given ODE
solver’s output (a vector of neural states), can be recursively
folded to build an RNN and then apply the learning algo-
rithm described in Algorithm 2 to train the system. Algo-
rithm 2 uses a vanilla stochastic gradient descent (SGD).
One can substitute this with a more performant variant of
the SGD, such as Adam (Kingma and Ba 2014), which we
use in our experiments.
Complexity. Table 1 summarizes the complexity of our
vanilla BPTT algorithm compared to an adjoint method.
We achieve a high degree of accuracy on both forward
and backward integration trajectories, with similar compu-
tational complexity, at large memory costs.

4 Bounds on τ and neural state of LTCs
LTCs are represented by an ODE which varies its time-
constant based on inputs. It is therefore important to see if

Input
trajectory

6-layer, width 100, tanh activations

Projection to trajectory
latent 2-D space

PCA

L1 L2 L3 L4 L5 L6𝑥 𝑡 = sin 𝑡

𝑦
𝑡
=
co
s(
𝑡)

PCA PCA PCA PCA PCA

Figure 1: Trajectory’s latent space becomes more complex
as the input passes through hidden layers.

LTCs stay stable for unbounded arriving inputs (Hasani et al.
2019; Lechner et al. 2020b). In this section, we prove that the
time-constant and the state of LTC neurons are bounded to a
finite range, as described in Theorems 1 and 2, respectively.

Theorem 1. Let xi denote the state of a neuron i within an
LTC network identified by Eq. 1, and let neuron i receive M
incoming connections. Then, the time-constant of the neu-
ron, τsysi , is bounded to the following range:

τi/(1 + τiWi) ≤ τsysi ≤ τi, (4)

The proof is provided in Appendix. It is constructed based
on bounded, monotonically increasing sigmoidal nonlinear-
ity for neural network f and its replacement in the LTC net-
work dynamics. A stable varying time-constant significantly
enhances the expressivity of this form of time-continuous
RNNs, as we discover more formally in Section 5.

Theorem 2. Let xi denote the state of a neuron i within an
LTC, identified by Eq. 1, and let neuron i receive M incom-
ing connections. Then, the hidden state of any neuron i, on
a finite interval Int ∈ [0, T], is bounded as follows:

min(0, Amini) ≤ xi(t) ≤ max(0, Amaxi), (5)

The proof is given in Appendix. It is constructed based
on the sign of the LTC’s equation’s compartments, and
an approximation of the ODE model by an explicit Euler
discretization. Theorem 2 illustrates a desired property of
LTCs, namely state stability which guarantees that the out-
puts of LTCs never explode even if their inputs grow to infin-
ity. Next we discuss the expressive power of LTCs compared
to the family of time-continuous models, such as CT-RNNs
and neural ordinary differential equations (Chen et al. 2018;
Rubanova, Chen, and Duvenaud 2019).

5 On the expressive power of LTCs
Understanding how the structural properties of neural net-
works determine which functions they can compute is
known as the expressivity problem. The very early attempts
on measuring expressivity of neural nets include the theo-
retical studies based on functional analysis. They show that
neural networks with three-layers can approximate any fi-
nite set of continuous mapping with any precision. This
is known as the universal approximation theorem (Hornik,
Stinchcombe, and White 1989; Funahashi 1989; Cybenko

Table 2: Computational depth of models

Computational Depth
Activations Neural ODE CT-RNN LTC

tanh 0.56 ± 0.016 4.13 ± 2.19 9.19 ± 2.92
sigmoid 0.56 ± 0.00 5.33 ± 3.76 7.00 ± 5.36
ReLU 1.29 ± 0.10 4.31 ± 2.05 56.9 ± 9.03
Hard-tanh 0.61 ± 0.02 4.05 ± 2.17 81.01 ± 10.05

Note: # of tries = 100, input samples’ ∆t = 0.01, T = 100 sequence length. # of layers = 1,
width = 100, σ2

w = 2, σ2
b = 1.

1989). Universality was extended to standard RNNs (Fu-
nahashi 1989) and even continuous-time RNNs (Funahashi
and Nakamura 1993). By careful considerations, we can also
show that LTCs are also universal approximators.

Theorem 3. Let x ∈ Rn, S ⊂ Rn and ẋ = F (x) be
an autonomous ODE with F : S → Rn a C1-mapping
on S. Let D denote a compact subset of S and assume
that the simulation of the system is bounded in the inter-
val I = [0, T]. Then, for a positive ε, there exist an LTC
network with N hidden units, n output units, and an out-
put internal state u(t), described by Eq. 1, such that for any
rollout {x(t)|t∈ I} of the system with initial value x(0)∈D,
and a proper network initialization,

maxt∈ I |x(t)−u(t)|<ε (6)

The main idea of the proof is to define an n-dimensional
dynamical system and place it into a higher dimensional sys-
tem. The second system is an LTC. The fundamental differ-
ence of the proof of LTC’s universality to that of CT-RNNs
(Funahashi and Nakamura 1993) lies in the distinction of the
semantics of both systems where the LTC network contains
a nonlinear input-dependent term in its time-constant mod-
ule which makes parts of the proof non-trivial.

The universal approximation theorem broadly explores
the expressive power of a neural network model. The the-
orem however, does not provide us with a foundational mea-
sure on where the separation is between different neural net-
work architectures. Therefore, a more rigorous measure of
expressivity is demanded to compare models, specifically
those networks specialized in spatiotemporal data process-
ing, such as LTCs. The advances made on defining measures
for the expressivity of static deep learning models (Pascanu,
Montufar, and Bengio 2013; Montufar et al. 2014; Eldan
and Shamir 2016; Poole et al. 2016; Raghu et al. 2017)
could presumably help measure the expressivity of time-
continuous models, both theoretically and quantitatively,
which we explore in the next section.

5.1 Measuring expressivity by trajectory length
A measure of expressivity has to take into account what de-
grees of complexity a learning system can compute, given
the network’s capacity (depth, width, type, and weights con-
figuration). A unifying expressivity measure of static deep
networks is the trajectory length introduced in (Raghu et al.
2017). In this context, one evaluates how a deep model trans-
forms a given input trajectory (e.g., a circular 2-dimensional
input) into a more complex pattern, progressively.

We can then perform principle component analysis (PCA)
over the obtained network’s activations. Subsequently,

we measure the length of the output trajectory in a 2-
dimensional latent space, to uncover its relative complexity
(see Fig. 1). The trajectory length is defined as the arc length
of a given trajectory I(t), (e.g. a circle in 2D space) (Raghu
et al. 2017): l(I(t)) =

∫
t
‖dI(t)/dt‖ dt. By establishing a

lower-bound for the growth of the trajectory length, one can
set a barrier between networks of shallow and deep architec-
tures, regardless of any assumptions on the network’s weight
configuration (Raghu et al. 2017), unlike many other mea-
sures of expressivity (Pascanu, Montufar, and Bengio 2013;
Montufar et al. 2014; Serra, Tjandraatmadja, and Rama-
lingam 2017; Gabrié et al. 2018; Hanin and Rolnick 2018,
2019; Lee, Alvarez-Melis, and Jaakkola 2019). We set out
to extend the trajectory-space analysis of static networks to
time-continuous (TC) models, and to lower-bound the tra-
jectory length to compare models’ expressivity. To this end,
we designed instances of Neural ODEs, CT-RNNs and LTCs
with shared f . The networks were initialized by weights
∼ N (0, σ2

w/k), and biases ∼ N (0, σ2
b). We then perform

forward-pass simulations by using different types of ODE
solvers, for arbitrary weight profiles, while exposing the
networks to a circular input trajectory I(t) = {I1(t) =
sin(t), I2(t) = cos(t)}, for t ∈ [0, 2π]. By looking at the
first two principle components (with an average variance-
explained of over 80%) of hidden layers’ activations, we
observed consistently more complex trajectories for LTCs.
Fig. 2 gives a glimpse of our empirical observations. All
networks are implemented by the Dormand-Prince explicit
Runge-Kutta(4,5) solver (Dormand and Prince 1980) with
a variable step size. We had the following observations: I)
Exponential growth of the trajectory length of Neural ODEs
and CT-RNNs with Hard-tanh and ReLU activations (Fig.
2A) and unchanged shape of their latent space regardless
of their weight profile. II) LTCs show a slower growth-rate
of the trajectory length when designed by Hard-tanh and
ReLU, with the compromise of realizing great levels of com-
plexity (Fig. 2A, 2C and 2E). III) Apart from multi-layer
time-continuous models built by Hard-tanh and ReLU acti-
vations, in all cases, we observed a longer and a more com-
plex latent space behavior for the LTC networks (Fig. 2B
to 2E). IV) Unlike static deep networks (Fig. 1), we wit-
nessed that the trajectory length does not grow by depth in
multi-layer continuous-time networks realized by tanh and
sigmoid (Fig. 2D). V) conclusively, we observed that the tra-
jectory length in TC models varies by a model’s activations,
weight and bias distributions variance, width and depth. We
presented this more systematically in Fig. 3. VI) Trajectory
length grows linearly with a network’s width (Fig. 3B - No-
tice the logarithmic growth of the curves in the log-scale Y-
axis). VII) The growth is considerably faster as the variance
grows (Fig. 3C). VIII) Trajectory length is reluctant to the
choice of ODE solver (Fig. 3A). IX) Activation functions
diversify the complex patterns explored by the TC system,
where ReLU and Hard-tanh networks demonstrate higher
degrees of complexity for LTCs. A key reason is the pres-
ence of recurrent links between each layer’s cells. Defini-
tion of Computational Depth (L). For one hidden layer of
f in a time-continuous network, L is the average number of
integration steps taken by the solver for each incoming input

tanh
sigmoid
ReLU
Hard-tanh
Hard-tanh
ReLU
Hard-tanh
ReLU
Hard-tanh
ReLU
tanh
sigmoid
ReLU
Hard-tanh

sample. Note that for an f with n layers we define the total
depth as n × L. These observations have led us to formu-
late Lower bounds for the growth of the trajectory length of
continuous-time networks.
Theorem 4. Trajectory Length growth Bounds for Neu-
ral ODEs and CT-RNNs. Let dx/dt = fn,k(x(t), I(t), θ)
with θ = {W, b}, represent a Neural ODE and dx(t)

dt =

− x(t)
τ + fn,k(x(t), I(t), θ) with θ = {W, b, τ} a CT-RNN.

f is randomly weighted withHard-tanh activations. Let I(t)
be a 2D input trajectory, with its progressive points (i.e.
I(t+ δt)) having a perpendicular component to I(t) for all
δt, with L = number of solver-steps. Then, by defining the
projection of the first two principle components’ scores of
the hidden states over each other, as the 2D latent trajectory
space of a layer d, z(d)(I(t)) = z(d)(t), for Neural ODE and
CT-RNNs respectively, we have:

E

[
l(z(d)(t))

]
≥ O

(
σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
l(I(t)),

(7)

E

[
l(z(d)(t))

]
≥ O

(
(σw − σb)

√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
l(I(t)).

(8)

The proof is provided in Appendix. It follows similar
steps as (Raghu et al. 2017) on the trajectory length bounds
established for deep networks with piecewise linear activa-
tions, with careful considerations due to the continuous-time
setup. The proof is constructed such that we formulate a re-
currence between the norm of the hidden state gradient in
layer d+1,

∥∥dz/dt(d+1)
∥∥, in principle components domain,

and the expectation of the norm of the right-hand-side of
the differential equations of neural ODEs and CT-RNNs. We
then roll back the recurrence to reach the inputs.

Note that to reduced the complexity of the problem, we
only bounded the orthogonal components of the hidden state
image

∥∥∥dz/dt(d+1)
⊥

∥∥∥, and therefore we have the assump-
tion on input I(t), in the Theorem’s statement (Raghu et al.

2017). Next, we find a lower-bound for the LTC networks.
Theorem 5. Growth Rate of LTC’s Trajectory Length. Let
Eq. 1 determine an LTC with θ = {W, b, τ, A}. With the
same conditions on f and I(t), as in Theorem 4, we have:

E

[
l(z(d)(t))

]
≥ O

((σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
×

(
σw +

∥∥z(d)
∥∥

min(δt, L)

))
l(I(t)).

(9)

The proof is provided in Appendix. A rough outline: we
construct the recurrence between the norm of the hidden
state gradients and the components of the right-hand-side of
LTC separately which progressively build up the bound.

5.2 Discussion of the theoretical bounds
I) As expected, the bound for the Neural ODEs is very sim-
ilar to that of an n layer static deep network with the ex-
ception of the exponential dependencies to the number of
solver-steps, L. II) The bound for CT-RNNs suggests their
shorter trajectory length compared to neural ODEs, accord-
ing to the base of the exponent. This results consistently
matches our experiments presented in Figs. 2 and 3. III) Fig.
2B and Fig. 3C show a faster-than-linear growth for LTC’s
trajectory length as a function of weight distribution vari-
ance. This is confirmed by LTC’s lower bound shown in Eq.
9. IV) LTC’s lower bound also depicts the linear growth of
the trajectory length with the width, k, which validates the
results presented in 3B. V) Given the computational depth of
the models L in Table 2 for Hard-tanh activations, the com-
puted lower bound for neural ODEs, CT-RNNs and LTCs
justify a longer trajectory length of LTC networks in the ex-
periments of Section 5. Next, we assess the expressive power
of LTCs in a set of real-life time-series prediction tasks.

6 Experimental Evaluation
6.1 Time series predictions. We evaluated the performance
of LTCs realized by the proposed Fused ODE solver against

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 18.966
l(CT-RNN) = 13.5982

l(LTC) = 49.3219

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 50.1121
l(CT-RNN) = 25.3465

l(LTC) = 58.4468

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 60.3861
l(CT-RNN) = 33.5122

l(LTC) = 195.712

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 81.0841
l(CT-RNN) = 39.9081

l(LTC) = 266.2873

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 110.943
l(CT-RNN) = 54.5492

l(LTC) = 527.0816

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 18.966
l(CT-RNN) = 13.5982

l(LTC) = 49.3219

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 50.1121
l(CT-RNN) = 25.3465

l(LTC) = 58.4468

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 60.3861
l(CT-RNN) = 33.5122

l(LTC) = 195.712

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 81.0841
l(CT-RNN) = 39.9081

l(LTC) = 266.2873

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 110.943
l(CT-RNN) = 54.5492

l(LTC) = 527.0816

Inputs
N-ODE
CT-RNN
LTC

Width = 100 Width = 200C

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 35.5591
l(CT-RNN) = 25.3775

l(LTC) = 36.6337

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.2179
l(CT-RNN) = 31.0013
l(LTC) = 3097.6399

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 72.1655
l(CT-RNN) = 63.7909
l(LTC) = 4826.3928

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 104.5981
l(CT-RNN) = 87.9204
l(LTC) = 18339.8985

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 138.4056
l(CT-RNN) = 120.58
l(LTC) = 53858.6441

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 35.5591
l(CT-RNN) = 25.3775

l(LTC) = 36.6337

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.2179
l(CT-RNN) = 31.0013
l(LTC) = 3097.6399

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 72.1655
l(CT-RNN) = 63.7909
l(LTC) = 4826.3928

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 104.5981
l(CT-RNN) = 87.9204
l(LTC) = 18339.8985

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 138.4056
l(CT-RNN) = 120.58
l(LTC) = 53858.6441

Inputs
N-ODE
CT-RNN
LTC

Width = 100 Width = 200E

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5D

RK45
ReLU

Depth = 1
𝜎!" = 2
𝜎#"= 1

RK45
Hard tanh
Depth = 1
𝜎!" = 2
𝜎#"= 1

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

Layer1 Layer2 Layer3

RK45 | Hard tanh | Depth = 3
Width = 100 | 𝜎!" = 2 | 𝜎#" = 1

RK45
tanh

Depth = 5
Width = 100

𝜎!" = 2
𝜎#
"= 1

A 𝜎!" = 1 𝜎!" = 2 𝜎!" = 4 RK45
Hard tanh
Depth = 1

Width = 100
𝜎#"= 1

B

Figure 2: Trajectory length deformation A) in network layers with Hard-tanh activations, B) as a function of the weight distri-
bution scaling factor, C) as a function of network width (ReLU), D) in network layers with logistic-sigmoid activations and E)
as a function of width (Hard-tanh).

Hard-tanh
Hard-tanh
Hard-tanh
ReLU
logistic-sigmoid
Hard-tanh

RK2(3) RK4(5) ABM1(13) TR-BDF2
ODE Solvers

0

200

400

600

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
activations = relu
depth = 1, width = 100

2
w = 2, 2

b = 1

10 25 50 100 150 200
Network Width (k)

100

101

102

103

104

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100, solver = RK45
activations = tanh
depth = 1, 2

w = 2, 2
b = 1

A B

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)
1 2 3 4

PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100
Va

rie
nc

e
Ex

pl
ai

ne
d

(%
)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100
Va

rie
nc

e
Ex

pl
ai

ne
d

(%
)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

N-ODE CT-RNN LTC

1 2 4 8

w
2

101

102

103

104

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100, solver = RK45
activations = relu
depth = 1, 2

b = 1

C

N-ODE CT-RNN LTC

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

L1 L2 L3 L4 L5 L6
Network Layers

101

102

103

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
solver = RK45
activations = sigmoid
depth = 6, 2

w = 2, 2
b = 1

D

Figure 3: Dependencies of the trajectory length measure. A) trajectory length vs different solvers (variable-step solvers).
RK2(3): Bogacki-Shampine Runge-Kutta (2,3) (Bogacki and Shampine 1989). RK4(5): Dormand-Prince explicit RK (4,5)
(Dormand and Prince 1980). ABM1(13): Adams-Bashforth-Moulton (Shampine 1975). TR-BDF2: implicit RK solver with 1st
stage trapezoidal rule and a 2nd stage backward differentiation (Hosea and Shampine 1996). B) Top: trajectory length vs net-
work width. Bottom: Variance-explained of principle components (purple bars) and their cumulative values (solid black line).
C) Trajectory length vs weights distribution variance. D) trajectory length vs layers. (More results in the supplements)

Table 3: Time series prediction Mean and standard deviation, n=5

Dataset Metric LSTM CT-RNN Neural ODE CT-GRU LTC (ours)
Gesture (accuracy) 64.57% ± 0.59 59.01% ± 1.22 46.97% ± 3.03 68.31% ± 1.78 69.55% ± 1.13
Occupancy (accuracy) 93.18% ± 1.66 94.54% ± 0.54 90.15% ± 1.71 91.44% ± 1.67 94.63% ± 0.17
Activity recognition (accuracy) 95.85% ± 0.29 95.73% ± 0.47 97.26% ± 0.10 96.16% ± 0.39 95.67% ± 0.575
Sequential MNIST (accuracy) 98.41% ± 0.12 96.73% ± 0.19 97.61% ± 0.14 98.27% ± 0.14 97.57% ± 0.18
Traffic (squared error) 0.169 ± 0.004 0.224 ± 0.008 1.512 ± 0.179 0.389 ± 0.076 0.099 ± 0.0095
Power (squared-error) 0.628 ± 0.003 0.742 ± 0.005 1.254 ± 0.149 0.586 ± 0.003 0.642 ± 0.021
Ozone (F1-score) 0.284 ± 0.025 0.236 ± 0.011 0.168 ± 0.006 0.260 ± 0.024 0.302 ± 0.0155

Table 4: Person activity, 1st setting - n=5

Algorithm Accuracy
LSTM 83.59%± 0.40
CT-RNN 81.54%± 0.33
Latent ODE 76.48%± 0.56
CT-GRU 85.27%± 0.39
LTC (ours) 85.48%± 0.40

the state-of-the-art discretized RNNs, LSTMs (Hochreiter
and Schmidhuber 1997), CT-RNNs (ODE-RNNs) (Funa-
hashi and Nakamura 1993; Rubanova, Chen, and Duvenaud
2019), continuous-time gated recurrent units (CT-GRUs)
(Mozer, Kazakov, and Lindsey 2017), and Neural ODEs
constructed by a 4th order Runge-Kutta solver as suggested
in (Chen et al. 2018), in a series of diverse real-life super-
vised learning tasks. The results are summarized in Table
3. The experimental setup are provided in Appendix. We
observed between 5% to 70% performance improvement
achieved by the LTCs compared to other RNN models in
four out of seven experiments and comparable performance
in the other three (see Table 3).
6.2 Person activity dataset. We use the ”Human Activ-
ity” dataset described in (Rubanova, Chen, and Duvenaud

2019) in two distinct frameworks. The dataset consists of
6554 sequences of activity of humans (e.g. lying, walking,
sitting), with a period of 211 ms. we designed two experi-
mental frameworks to evaluate models’ performance. In the
1st Setting, the baselines are the models described before,
and the input representations are unchanged (details in Ap-
pendix). LTCs outperform all models and in particular CT-
RNNs and neural ODEs with a large margin as shown in
Table 4. Note that the CT-RNN architecture is equivalent to
the ODE-RNN described in (Rubanova, Chen, and Duve-
naud 2019), with the difference of having a state damping
factor τ .

In the 2nd Setting, we carefully set up the experiment to
match the modifications made by (Rubanova, Chen, and Du-
venaud 2019) (See supplements), to obtain a fair compari-
son between LTCs and a more diverse set of RNN variants
discussed in (Rubanova, Chen, and Duvenaud 2019). LTCs
show superior performance with a high margin compared to
other models. The results are summarized in Table 5).
6.3 Half-Cheetah kinematic modeling. We intended to
evaluate how well continuous-time models can capture
physical dynamics. To perform this, we collected 25 roll-
outs of a pre-trained controller for the HalfCheetah-v2 gym
environment (Brockman et al. 2016), generated by the Mu-

Table 5: Person activity, 2nd setting

Algorithm Accuracy
RNN ∆t

∗ 0.797± 0.003
RNN-Decay∗ 0.800± 0.010
RNN GRU-D∗ 0.806± 0.007
RNN-VAE∗ 0.343± 0.040
Latent ODE (D enc.)∗ 0.835± 0.010
ODE-RNN ∗ 0.829 ± 0.016
Latent ODE(C enc.)∗ 0.846 ± 0.013
LTC (ours) 0.882 ± 0.005

Note: Accuracy for algorithms indicated by ∗, are taken directly
from (Rubanova, Chen, and Duvenaud 2019). RNN ∆t = clas-
sic RNN + input delays (Rubanova, Chen, and Duvenaud 2019).
RNN-Decay = RNN with exponential decay on the hidden states
(Mozer, Kazakov, and Lindsey 2017). GRU-D = gated recurrent
unit + exponential decay + input imputation (Che et al. 2018). D-
enc. = RNN encoder (Rubanova, Chen, and Duvenaud 2019). C-
enc = ODE encoder (Rubanova, Chen, and Duvenaud 2019). n=5

1
2

3

4
5

6

Time
𝜙

+−

17 input observations | 6 control outputs | 𝜙 = joint angle

Figure 4: Half-cheetah physics simulation

JoCo physics engine (Todorov, Erez, and Tassa 2012). The
task is then to fit the observation space time-series in an au-
toregressive fashion (Fig. 4). To increase the difficulty, we
overwrite 5% of the actions by random actions. The test re-
sults are presented in Table 6, and root for the superiority of
the performance of LTCs compared to other models.

7 Related Works
Time-continuous models. TC networks have become un-
precedentedly popular. This is due to the manifestation of
several benefits such as adaptive computations, better con-
tinuous time-series modeling, memory, and parameter ef-
ficiency (Chen et al. 2018). A large number of alterna-
tive approaches have tried to improve and stabilize the ad-
joint method (Gholami, Keutzer, and Biros 2019), use neural
ODEs in specific contexts (Rubanova, Chen, and Duvenaud
2019; Lechner et al. 2019) and to characterize them better
(Dupont, Doucet, and Teh 2019; Durkan et al. 2019; Jia and
Benson 2019; Hanshu et al. 2020; Holl, Koltun, and Thuerey
2020; Quaglino et al. 2020). In this work, we investigated the
expressive power of neural ODEs and proposed a new ODE
model to improve their expressivity and performance.
Measures of expressivity. A large body of modern works
tried to find answers to the questions such as why deeper
networks and particular architectures perform well, and
where is the boundary between the approximation capabil-
ity of shallow networks and deep networks? In this con-
text, (Montufar et al. 2014) and (Pascanu, Montufar, and

Table 6: Sequence modeling. Half-Cheetah dynamics n=5

Algorithm MSE
LSTM 2.500± 0.140
CT-RNN 2.838± 0.112
Neural ODE 3.805 ± 0.313
CT-GRU 3.014± 0.134
LTC (ours) 2.308± 0.015

Bengio 2013) suggested to count the number of linear re-
gions of neural networks as a measure of expressivity, (El-
dan and Shamir 2016) showed that there exists a class of
radial functions that smaller networks fail to produce, and
(Poole et al. 2016) studied the exponential expressivity of
neural networks by transient chaos.

These methods are compelling; however, they are bound
to particular weight configurations of a given network in or-
der to lower-bound expressivity similar to (Serra, Tjandraat-
madja, and Ramalingam 2017; Gabrié et al. 2018; Hanin
and Rolnick 2018, 2019; Lee, Alvarez-Melis, and Jaakkola
2019). (Raghu et al. 2017) introduced an interrelated con-
cept which quantifies the expressiveness of a given static
network by trajectory length. We extended their expressivity
analysis to time-continuous networks and provided lower-
bound for the growth of the trajectory length, proclaiming
the superior approximation capabilities of LTCs.

8 Conclusions, Scope and Limitations
We investigated the use of a novel class of time-continuous
neural network models obtained by a combination of lin-
ear ODE neurons and special nonlinear weight configura-
tions. We showed that they could be implemented effectively
by arbitrary variable and fixed step ODE solvers, and be
trained by backpropagation through time. We demonstrated
their bounded and stable dynamics, superior expressivity,
and superseding performance in supervised learning time-
series prediction tasks, compared to standard and modern
deep learning models.
Long-term dependencies. Similar to many variants of time-
continuous models, LTCs express the vanishing gradient
phenomenon (Pascanu, Mikolov, and Bengio 2013; Lech-
ner and Hasani 2020), when trained by gradient descent. Al-
though the model shows promise on a variety of time-series
prediction tasks, they would not be the obvious choice for
learning long-term dependencies in their current format.
Choice of ODE solver. Performance of time-continuous
models is heavily tided to their numerical implementation
approach (Hasani 2020). While LTCs perform well with ad-
vanced variable-step solvers and the Fused fixed-step solver
introduced here, their performance is majorly influenced
when off-the-shelf explicit Euler methods are used.
Time and Memory. Neural ODEs are remarkably fast com-
pared to more sophisticated models such as LTCs. Nonethe-
less, they lack expressivity. Our proposed model, in their
current format, significantly enhances the expressive power
of TC models at the expense of elevated time and memory
complexity which must be investigated in the future.

Causality. Models described by time-continuous differen-
tial equation semantics inherently possess causal structures
(Schölkopf 2019), especially models that are equipped with
recurrent mechanisms to map past experiences to next-
step predictions. Studying causality of performant recur-
rent models such as LTCs would be an exciting future re-
search direction to take, as their semantics resemble dynamic
causal models (Friston, Harrison, and Penny 2003) with a
bilinear dynamical system approximation (Penny, Ghahra-
mani, and Friston 2005). Accordingly, a natural application
domain would be the control of robots in continuous-time
observation and action spaces where causal structures such
as LTCs can help improve reasoning (Lechner et al. 2020a).

Acknowledgments
R.H. and D.R. are partially supported by Boeing. R.H. and
R.G. were partially supported by the Horizon-2020 ECSEL
Project grant No. 783163 (iDev40). M.L. was supported in
part by the Austrian Science Fund (FWF) under grant Z211-
N23 (Wittgenstein Award). A.A. is supported by the Na-
tional Science Foundation (NSF) Graduate Research Fel-
lowship Program. This research work is partially drawn from
the PhD dissertation of R.H.

References
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-Ortiz,
J. L. 2013. A public domain dataset for human activity
recognition using smartphones. In Esann.
Bogacki, P.; and Shampine, L. F. 1989. A 3 (2) pair of
Runge-Kutta formulas. Applied Mathematics Letters 2(4):
321–325.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540 .
Candanedo, L. M.; and Feldheim, V. 2016. Accurate occu-
pancy detection of an office room from light, temperature,
humidity and CO2 measurements using statistical learning
models. Energy and Buildings 112: 28–39.
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y.
2018. Recurrent neural networks for multivariate time series
with missing values. Scientific reports 8(1): 1–12.
Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. In Ad-
vances in Neural Information Processing Systems, 6571–
6583.
Cybenko, G. 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of control, signals and sys-
tems 2(4): 303–314.
Dormand, J. R.; and Prince, P. J. 1980. A family of embed-
ded Runge-Kutta formulae. Journal of computational and
applied mathematics 6(1): 19–26.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. URL http://archive.ics.uci.edu/ml.
Dupont, E.; Doucet, A.; and Teh, Y. W. 2019. Augmented
neural odes. In Advances in Neural Information Processing
Systems, 3134–3144.

Durkan, C.; Bekasov, A.; Murray, I.; and Papamakarios, G.
2019. Neural spline flows. In Advances in Neural Informa-
tion Processing Systems, 7509–7520.
Eldan, R.; and Shamir, O. 2016. The power of depth for
feedforward neural networks. In Conference on learning
theory, 907–940.
Friston, K. J.; Harrison, L.; and Penny, W. 2003. Dynamic
causal modelling. Neuroimage 19(4): 1273–1302.
Funahashi, K.-I. 1989. On the approximate realization of
continuous mappings by neural networks. Neural networks
2(3): 183–192.
Funahashi, K.-i.; and Nakamura, Y. 1993. Approximation
of dynamical systems by continuous time recurrent neural
networks. Neural networks 6(6): 801–806.
Gabrié, M.; Manoel, A.; Luneau, C.; Macris, N.; Krzakala,
F.; Zdeborová, L.; et al. 2018. Entropy and mutual infor-
mation in models of deep neural networks. In Advances in
Neural Information Processing Systems, 1821–1831.
Gholami, A.; Keutzer, K.; and Biros, G. 2019. Anode: Un-
conditionally accurate memory-efficient gradients for neural
odes. arXiv preprint arXiv:1902.10298 .
Hanin, B.; and Rolnick, D. 2018. How to start training: The
effect of initialization and architecture. In Advances in Neu-
ral Information Processing Systems, 571–581.
Hanin, B.; and Rolnick, D. 2019. Complexity of linear re-
gions in deep networks. arXiv preprint arXiv:1901.09021
.
Hanshu, Y.; Jiawei, D.; Vincent, T.; and Jiashi, F. 2020. On
Robustness of Neural Ordinary Differential Equations. In
International Conference on Learning Representations.
Hasani, R. 2020. Interpretable Recurrent Neural Networks
in Continuous-time Control Environments. PhD dissertation,
Technische Universität Wien.
Hasani, R.; Amini, A.; Lechner, M.; Naser, F.; Grosu, R.;
and Rus, D. 2019. Response characterization for audit-
ing cell dynamics in long short-term memory networks. In
2019 International Joint Conference on Neural Networks
(IJCNN), 1–8. IEEE.
Hasani, R.; Lechner, M.; Amini, A.; Rus, D.; and Grosu,
R. 2020. The natural lottery ticket winner: Reinforcement
learning with ordinary neural circuits. In Proceedings of
the 2020 International Conference on Machine Learning.
JMLR. org.
Hirsch, M. W.; and Smale, S. 1973. Differential equations,
dynamical systems and linear algebra. Academic Press col-
lege division.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Holl, P.; Koltun, V.; and Thuerey, N. 2020. Learning to
Control PDEs with Differentiable Physics. arXiv preprint
arXiv:2001.07457 .
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural networks 2(5): 359–366.

http://archive.ics.uci.edu/ml

Hosea, M.; and Shampine, L. 1996. Analysis and imple-
mentation of TR-BDF2. Applied Numerical Mathematics
20(1-2): 21–37.

Jia, J.; and Benson, A. R. 2019. Neural jump stochastic dif-
ferential equations. In Advances in Neural Information Pro-
cessing Systems, 9843–9854.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Koch, C.; and Segev, K. 1998. Methods in Neuronal Model-
ing - From Ions to Networks. MIT press, second edition.

Lapicque, L. 1907. Recherches quantitatives sur l’excitation
electrique des nerfs traitee comme une polarization. Journal
de Physiologie et de Pathologie Generalej 9: 620–635.

Lechner, M.; and Hasani, R. 2020. Learning Long-Term
Dependencies in Irregularly-Sampled Time Series. arXiv
preprint arXiv:2006.04418 .

Lechner, M.; Hasani, R.; Amini, A.; Henzinger, T. A.; Rus,
D.; and Grosu, R. 2020a. Neural circuit policies enabling au-
ditable autonomy. Nature Machine Intelligence 2(10): 642–
652.

Lechner, M.; Hasani, R.; Rus, D.; and Grosu, R. 2020b.
Gershgorin Loss Stabilizes the Recurrent Neural Network
Compartment of an End-to-end Robot Learning Scheme. In
2020 International Conference on Robotics and Automation
(ICRA). IEEE.

Lechner, M.; Hasani, R.; Zimmer, M.; Henzinger, T. A.; and
Grosu, R. 2019. Designing worm-inspired neural networks
for interpretable robotic control. In 2019 International Con-
ference on Robotics and Automation (ICRA), 87–94. IEEE.

Lee, G.-H.; Alvarez-Melis, D.; and Jaakkola, T. S. 2019. To-
wards robust, locally linear deep networks. arXiv preprint
arXiv:1907.03207 .

Montufar, G. F.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014.
On the number of linear regions of deep neural networks. In
Advances in neural information processing systems, 2924–
2932.

Mozer, M. C.; Kazakov, D.; and Lindsey, R. V. 2017.
Discrete Event, Continuous Time RNNs. arXiv preprint
arXiv:1710.04110 .

Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the diffi-
culty of training recurrent neural networks. In International
conference on machine learning, 1310–1318.

Pascanu, R.; Montufar, G.; and Bengio, Y. 2013. On
the number of response regions of deep feed forward net-
works with piece-wise linear activations. arXiv preprint
arXiv:1312.6098 .

Penny, W.; Ghahramani, Z.; and Friston, K. 2005. Bilinear
dynamical systems. Philosophical Transactions of the Royal
Society B: Biological Sciences 360(1457): 983–993.

Pontryagin, L. S. 2018. Mathematical theory of optimal pro-
cesses. Routledge.

Poole, B.; Lahiri, S.; Raghu, M.; Sohl-Dickstein, J.; and
Ganguli, S. 2016. Exponential expressivity in deep neural

networks through transient chaos. In Advances in neural in-
formation processing systems, 3360–3368.
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flan-
nery, B. P. 2007. Numerical Recipes 3rd Edition: The Art
of Scientific Computing. New York, NY, USA: Cambridge
University Press, 3 edition.
Quaglino, A.; Gallieri, M.; Masci, J.; and Koutnı́k, J. 2020.
SNODE: Spectral Discretization of Neural ODEs for Sys-
tem Identification. In International Conference on Learning
Representations.
Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Dick-
stein, J. S. 2017. On the expressive power of deep neural
networks. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 2847–2854. JMLR.
Rubanova, Y.; Chen, R. T.; and Duvenaud, D. 2019. La-
tent odes for irregularly-sampled time series. arXiv preprint
arXiv:1907.03907 .
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. nature
323(6088): 533–536.
Schäfer, A. M.; and Zimmermann, H. G. 2006. Recurrent
neural networks are universal approximators. In Interna-
tional Conference on Artificial Neural Networks, 632–640.
Springer.
Schölkopf, B. 2019. Causality for Machine Learning. arXiv
preprint arXiv:1911.10500 .
Serra, T.; Tjandraatmadja, C.; and Ramalingam, S. 2017.
Bounding and counting linear regions of deep neural net-
works. arXiv preprint arXiv:1711.02114 .
Shampine, L. F. 1975. Computer solution of ordinary differ-
ential equations. The Initial Value Problem .
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.
Tsagris, M.; Beneki, C.; and Hassani, H. 2014. On the folded
normal distribution. Mathematics 2(1): 12–28.
Wagner, P. K.; Peres, S. M.; Madeo, R. C. B.;
de Moraes Lima, C. A.; and de Almeida Freitas, F. 2014.
Gesture unit segmentation using spatial-temporal informa-
tion and machine learning. In The Twenty-Seventh Interna-
tional Flairs Conference.
Wicks, S. R.; Roehrig, C. J.; and Rankin, C. H. 1996. A dy-
namic network simulation of the nematode tap withdrawal
circuit: predictions concerning synaptic function using be-
havioral criteria. Journal of Neuroscience 16(12): 4017–
4031.
Zhang, K.; and Fan, W. 2008. Forecasting skewed bi-
ased stochastic ozone days: analyses, solutions and beyond.
Knowledge and Information Systems 14(3): 299–326.
Zhuang, J.; Dvornek, N.; Li, X.; Tatikonda, S.; Pa-
pademetris, X.; and Duncan, J. 2020. Adaptive Checkpoint
Adjoint Method for Gradient Estimation in Neural ODE. In
Proceedings of the 37th International Conference on Ma-
chine Learning. PMLR 119.

Supplementary Materials

S1 Proof of Theorem 1
Proof. Assuming the neural network f in Eq. 1, possesses a bounded sigmoidal nonlinearity which is a monotonically increas-
ing between 0 and 1. Then for each neuron i, we have:

0 < f(xj(t), γij , µij) < 1 (S1)

By replacing the upper-bound of f in Eq. 1, and assuming a scaling weight matrix WM×1
i , for each neuron i in f , we get:

dxi
dt

= −
[1

τi
+Wi

]
xi(t) +WiAi. (S2)

The Equation simplifies to a linear ODE, of the form:

dxi
dt

= −
[1

τi
+Wi

]
︸ ︷︷ ︸

a

xi −WiAi︸ ︷︷ ︸
b

, → dxi
dt

= −axi + b, (S3)

with a solution of the form:
xi(t) = k1e

−at +
b

a
. (S4)

From this solution, we derive the lower bound of the system’s time constant, τminsysi :

τminsysi =
1

a
=

1

1 + τiWi
. (S5)

By replacing the lower-bound of f in Eq. 1, the equation simplifies to an autonomous linear ODE as follows:

dxi
dt

= − 1

τi
xi(t). (S6)

which gives us the upper-bound of the system’s time-constant, τmaxsysi :

τmaxsysi = τi (S7)

S2 Proof of Theorem 2
Proof. Let us insert M = max{0, Amaxi } as the neural state of neuron i, xi(t) into Equation 1:

dxi
dt

= −
[1

τ
+ f(xj(t), t, θ)

]
M + f(xj(t), t, θ)Ai. (S8)

Now by expanding the brackets, we get

dxi
dt

= −1

τ
M︸ ︷︷ ︸

≤ 0

+−f(xj(t), t, θ)M + f(xj(t), t, θ)Ai︸ ︷︷ ︸
≤ 0

. (S9)

The right-hand side of Eq. S9, is negative based on the conditions on M , positive weights, and the fact that f(xj) is also
positive, Therefore, the left-hand-side must also be negative and if we perform an approximation on the derivative term, the
following holds:

dxi
dt
≤ 0,

dxi
dt
≈ xi(t+ ∆t)− xi(t)

∆t
≤ 0, (S10)

By substituting xi(t) with M , we get:

x(t+ ∆t)−M
∆t

≤ 0 → x(t+ ∆t) ≤M (S11)

and therefore:
xi(t) ≤ max(0, Amaxi). (S12)

Now if we replace x(i) by m = min{0, Amini }, and follow a similar methodology used for the upper bound, we can derive:

x(t+ ∆t)−m
∆t

≤ 0 → x(t+ ∆t) ≤ m, (S13)

and therefore:

xi(t) ≥ min(0, Amini). (S14)

S3 Proof of Theorem 3
We prove that any given n-dimensional dynamical system for a finite simulation time can be approximated by the internal and
output states of an LTC, with n-outputs, some hidden nodes, and a proper initial condition. We base our proof on the funda-
mental universal approximation theorem (Hornik, Stinchcombe, and White 1989) on feedforward neural networks (Funahashi
1989; Cybenko 1989; Hornik, Stinchcombe, and White 1989), recurrent neural networks (RNN) (Funahashi 1989; Schäfer and
Zimmermann 2006) and continuous-time RNNs (Funahashi and Nakamura 1993). The fundamental difference of the proof of
the universal approximation capability of LTCs compared to that of CT-RNNs lies in the distinction of the semantics of both
ODE systems. LTC networks contain a nonlinear input-dependent term in their time-constant module, represented in Eq. 1,
which alters the entire dynamical system from that of CT-RNNs. Therefore, careful considerations have to be adjusted while
taking the same approach to that of CT-RNNs for proving their universality. We first revisit preliminary statements that are used
in the proof and are about basic topics on dynamical systems.

THEOREM (The fundamental approximation theorem) (Funahashi 1989). Let x = (x1, ..., xn) be an n-dimensional Eu-
clidean space Rn. Let f(x) be a sigmoidal function (a non-constant, monotonically increasing and bounded continous function
in R). Let K be a compact subset of Rn, and f(x1, ..., xn) be a continuous function on K. Then, for an arbitrary ε > 0, there
exist an integer N , real constants ci, θi(i = 1, ..., N) and wij(i = 1, ..., N ; j = 1, ..., n), such that

max
x∈K
|g(x1, ..., xn)−

N∑
i=1

cif(

n∑
j=1

wijxj − θi)| < ε (S15)

holds.
This theorem illustrates that three-layer feedforward neural networks (Input-hidden layer-output), can approximate any con-

tinuous mapping g : Rn → Rm on a compact set.
THEOREM (Approximation of dynamical systems by continuous time recurrent neural networks) (Funahashi and Nakamura

1993). Let D ⊂ Rn and F : D → Rn be an autonomous ordinary differential equation and C1-mapping, and let ẋ = F (x)
determine a dynamical system on D. Let K denote a compact subset of D and we consider the trajectories of the system on the
interval I = [0, T]. Then, for an arbitrary positive ε, there exist an integer N and a recurrent neural network with N hidden
units, n output units, and an output internal state u(t) = (U1(t), ..., Un(t)), expressed as:

dui(t)

dt
= −ui(t)

τi
+

m∑
j=1

wijf(uj(t)) + Ii(t), (S16)

where τi is the time-constant, wij are the weights, Ii(t) is the input, and f is a C1-sigmoid function (f(x) = 1/(1 + exp(−x)),
such that for any trajectory {x(t); t ∈ I} of the system with initial value x(0) ∈ K, and a proper initial condition of the
network the statement below holds:

max
t∈I
|x(t)− u(t)| < ε.

The theorem was proved for the case where the time-constants, τ , were kept constant for all hidden states, and the RNN was
without inputs (Ii(t) = 0) (Funahashi and Nakamura 1993).

We now restate the necessary concepts from dynamical systems to be used in the proof. Where necessary, we adopt modifi-
cations and extensions to the Lemmas, for proving Theorem 1.

Lipschitz. The mapping F : S → Rn, where S is an open subset of Rn, is called Lipschitz on S if there exist a constant L
(Lipschitz constant), such that:

|F (x)− F (y)| ≤ L|x− y|, ∀x, y ∈ S. (S17)
Locally Lipschitz. If every point of S has neighborhood S0 in S, such that the restriction F | S0 is Lipschitz, then F is

locally Lipschitz.
Lemma 1. Let a mapping F : S → Rn be C1. Then F is locally Lipschitz. Also, if D ⊂ S is compact, then the restriction
F | D is Lipschitz. (Proof in (Hirsch and Smale 1973), chapter 8, section 3).

Lemma 2. Let F : S → Rn be a C1-mapping and x0 ∈ S. There exists a positive a and a unique solution x : (−a, a)→ S of
the differential equation

ẋ = F (x), (S18)
which satisfies the initial condition x(0) = x0. (Proof in (Hirsch and Smale 1973), chapter 8, section 2, Theorem 1.)
Lemma 3. Let S be an open subset of Rn and F : S → Rn be a C1-mapping. On a maximal interval J = (α, β) ⊂ R, let x(t)
be a solution. Then for any compact subset D ⊂ S, there exists some t ∈ (α, β), for which x(t) /∈ D. (Proof in (Hirsch and
Smale 1973), Chapter 8, section 5, Theorem).
Lemma 4. For an F : Rn → Rn which is a bound C1-mapping, the differential equation

ẋ = −x
τ

+ F (x), (S19)

where τ > 0 has a unique solution on [0,∞). (Proof in (Funahashi and Nakamura 1993), Section 4, Lemma 4).

Lemma 5. For an F : Rn → R+n which is a bounded C1-mapping, the differential equation

ẋ = −(1/τ + F (x))x+AF (x), (S20)

in which τ is a positive constant, and A is constant coefficients bound to a range [−α, β] for 0 < α < +∞, and 0 ≤ β < +∞,
has a unique solution on [0,∞).

Proof. Based on the assumptions, we can take a positive M , such that

0 ≤ Fi(x) ≤M(∀i = 1, ..., n) (S21)

by looking at the solutions of the following differential equation:

ẋ = −(1/τ +M)x+AM, (S22)

we can show that

min{|xi(0)|, τ(AM)

1 + τM
} ≤ xi(t) ≤ max{|xi(0)|, τ(AM)

1 + τM
}, (S23)

if we set the output of the max to Cmaxi and the output of the min to Cmini and also set C1 = min{Cmini} and C2 =
max{Cmaxi}, then the solution x(t) satisfies √

nC1 ≤ x(t) ≤
√
nC2. (S24)

Based on Lemma 2 and Lemma 3 a unique solution exists on the interval [0,+∞).

Lemma 5 demonstrates that an LTC network defined by Eq. S20, has a unique solution on [0,∞), since the output function
is bounded and is a C1 mapping.

Lemma 6. Let two continuous mapping F, F̃ : S → Rn be Lipschitz, and L be a Lipschitz constant of F . if ∀x ∈ S,

|F (x)− F̃ (x)| < ε, (S25)

holds, if x(t) and y(t) are solutions to
ẋ = F (x), (S26)

ẏ = F̃ (x), (S27)
on some interval J , such that x(t0) = y(t0), then

|x(t)− y(t)| ≤ ε

L
(eL|t−t0| − 1). (S28)

(Proof in (Hirsch and Smale 1973), chapter 15, section 1, Theorem 3).

S3.1 Proof of the Theorem:
Proof. Using the above definitions and lemmas, we prove that LTCs are universal approximators.

Part 1. We choose an η which is in range (0,min{ε, λ}), for ε > 0, and λ the distance between D̃ and boundary δS of S.
Dη is set:

Dη = {x ∈ Rn;∃z ∈ D̃, |x− z| ≤ η}. (S29)

Dη stands for a compact subset of S, because D̃ is compact. Thus, F is Lipschitz on Dη by Lemma 1. Let LF be the Lipschitz
constant of F |Dη , then, we can choose an εl > 0, such that

εl <
ηLF

2(eLFT−1)
. (S30)

Based on the universal approximation theorem, there is an integer N , and an n ×N matrix A, and an N × n matrix C and
an N -dimensional vector µ such that

max|F (x)−Af(γx + µ)| < εl
2
. (S31)

We define a C1-mapping F̃ : Rn → Rn as:

F̃ (x) = −(1/τ +Wlf(γx + µ))x +Wlf(γx + µ)A, (S32)

with parameters matching that of Eq. 1 with Wl = W .
We set system’s time-constant, τsys as:

τsys =
1

τ/1 + τWlf(γx+ µ)
. (S33)

We chose a large τsys, conditioned with the following:

(a) ∀x ∈ Dη; | x
τsys
| < εl

2
(S34)

(b) | µ
τsys
| <

ηLG̃
2(eLG̃T − 1)

and | 1

τsys
| <

LG̃
2
, (S35)

where LG̃/2 is a lipschitz constant for the mapping Wlf : Rn+N → Rn+N which we will determine later. To satisfy
conditions (a) and (b), τWl << 1 should hold true.

Then by Eq. S31 and S32, we can prove:
max
x∈Dη

|F (x)− F̃ (x)| < εl (S36)

Let’s set x(t) and x̃t) with initial state x(0) = x̃(0) = x0 ∈ D, as the solutions of equations below:

ẋ = F (x), (S37)

˙̃x = F̃ (x). (S38)

Based on Lemma 6 for any t ∈ I ,

|x(t)− x̃(t)| ≤ εl
LF

(eLF t − 1) (S39)

≤ εl
LF

(eLFT − 1). (S40)

Thus, based on the conditions on ε,

max
t∈I
|x(t)− x̃(t)| < η

2
. (S41)

Part 2. Let’s Consider the following dynamical system defined by F̃ in Part 1:

˙̃x = − 1

τsys
x̃ +Wlf(γx̃ + µ)A. (S42)

Suppose we set ỹ = γx̃ + µ; then:
˙̃y = γ ˙̃x = − 1

τsys
ỹ + Ef(ỹ) +

µ

τsys
, (S43)

where E = γWlA, an N ×N matrix. We define

z̃ = (x̃1, ..., x̃n, ỹ1, ..., ỹn), (S44)

and we set a mapping G̃ : Rn+N → Rn+N as:

G̃(z̃) = − 1

τsys
z̃ +Wf(z̃) +

µ1

τsys
, (S45)

where;

W (n+N)×(n+N) =

(
0 A
0 E

)
, (S46)

µn+N
1 =

(
0
µ

)
. (S47)

Now using Lemma 2, we can show that solutions of the following dynamical system:

˙̃z = G̃(z̃), ỹ(0) = γx̃(0) + µ, (S48)

are equivalent to the solutions of the Eq. S42.
Let’s define a new dynamical system G : Rn+N → Rn+N as follows:

G(z) = − 1

τsys
z +Wf(z), (S49)

where z = (x1, ..., xn, y1, ..., yn). Then the dynamical system below

ż = − 1

τsys
z +Wf(z), (S50)

can be realized by an LTC, if we set h(t) = (h1(t), ..., hN (t)) as the hidden states, and u(t) = (U1(t), ..., Un(t)) as the
output states of the system. Since G̃ and G are both C1-mapping and f ′(x) is bound, therefore, the mapping z̃ 7→ Wf(z̃) is
Lipschitz on Rn+N , with a Lipschitz constant LG̃/2. As LG̃/2 is lipschitz constant for −z̃/τsys by condition (b) on τsys, LG̃
is a Lipschitz constant of G̃.

From Eq. S45, Eq. S49, and condition (b) of τsys, we can derive the following:

|G̃(z)−G(z)| = | µ
τsys
| <

ηLG̃
2(eLG̃T − 1)

. (S51)

Accordingly, we can set z̃(t) and z(t), solutions of the dynamical systems:

˙̃z = G̃(z),

{
x̃(0) = x0 ∈ D
ỹ(0) = γx0 + µ

(S52)

ż = G(z),

{
u(0) = x0 ∈ D
h̃(0) = γx0 + µ

(S53)

By Lemma 6, we achieve
max
t∈I
|z̃(t)− z(t)| < η

2
, (S54)

and therefore we have:
max
t∈I
|x̃(t)− u(t)| < η

2
, (S55)

Part3. Now by using Eq. S41 and Eq. S55, for a positive ε, we can design an LTC with internal dynamical state z(t), with
τsys and W . For x(t) satisfying ẋ = F (x), if we initialize the network by u(0) = x(0) and h(0) = γx(0) + µ, we obtain:

max
t∈I
|x(t)− u(t)| < η

2
+
η

2
= η < ε. (S56)

REMARKS. LTCs allow the elements of the hidden layer to have recurrent connections to each other. However, it assumes a
feed-forward connection stream from hidden nodes to output units. We assumed no inputs to the system and principally showed
that the hidden nodes’ together with output units, could approximate any finite trajectory of an autonomous dynamical system.

S4 Proof of Theorem 4
In this section, we describe our mathematical notions and revisit concepts that are required to state the proof. The main state-
ments of our theoretical results about the expressive power of time-continuous neural networks are chiefly built over the ex-
pressivity measure, trajectory length, introduced for static deep neural networks in (Raghu et al. 2017). It is therefore intuitive
to follow similar steps with careful considerations, due to the continuous nature of the models.

S4.1 Notations
Neural network architecture – We determine a neural network architecture by fn,k(x(t), I(t), θ)d, with n layers (depth),width
k and total number of neurons, N = n× k.

Neural state, x(t) – For a layer d of a network f , x(d)(t) represent the neural state of the layer and is a matrix of the size
k ×m, with m being the size of the input time series.

Inputs, I(t) – is a 2-dimensional matrix containing a 2-D trajectory for t ∈ [0, tmax].
Network parameters, θ – include weights matrices for each layer d of the form W (d) ∼ N (0, σ2

w/k) and bias vectors as
b(d) ∼ N (0, σ2

b). For CT-RNNs the vector parameter τ (d) is also sampled from ∼ N (0, σ2
b)

Perpendicular and parallel components – For given vectors x and y we can decompose each vector in respect to one another
as y = y‖ + y⊥. That is, y‖ stands for component of y parallel to x and y⊥ is the perpendicular component in respect to x.

Weight matrix decomposition – (Raghu et al. 2017) showed that for given non-zero vectors x and y, and a full rank matrix
W , one can write a matrix decomposition for W in respect to x and y as follows: W = W

‖
‖ + W

‖
⊥ + W⊥ ‖ + W⊥ ⊥ , such

that, W
‖
⊥ x = 0, W⊥ ⊥ x = 0, yT W⊥ ‖ = 0 and yT W⊥ ⊥ = 0. In this notation, the decomposition superscript on left is in

respect to y and the subscript on right is in respect to x. It has also been observed that W⊥ in respect to x can be obtained by:
W⊥ = W −W‖ (Raghu et al. 2017).

Lemma 7. Independence of Projections (Raghu et al. 2017). Given a matrix W with iid entries drawn form N (0, σ2), then its
decomposition matrices W⊥ and W‖ in respect to x, are independent random variables.

Proof in (Raghu et al. 2017), Appendix, Lemma 2.
Lemma 8. Norm of Gaussian Vector (Raghu et al. 2017). The norm of a Gaussian vector X ∈ Rk, with its entries sampled iid
∼ N (0, σ2) is given by:

E[‖X‖] = σ
√

2
Γ((k + 1)/2)

Γ(k/2)
. (S57)

Proof in (Raghu et al. 2017), Appendix, Lemma 3.
Lemma 9. Norm of Projections (Raghu et al. 2017). for a W k×k with conditions of Lemma 8, and two vectors, x and y, then
the following holds for x⊥ being a non-zero vector, perpendicular to x:

E[
∥∥ W⊥ ⊥ x⊥

∥∥] = ‖x⊥‖σ
√

2
Γ((k)/2)

Γ((k − 1)/2)
≥ ‖x⊥‖σ

√
2(
k

2
− 3

4
)1/2. (S58)

It has also been shown in (Raghu et al. 2017): ”that if 1A is an identity matrix with non-zero diagonal entry i iff i ∈ A ⊂ [k]
and |A| > 2, then:

E[
∥∥1A W⊥ ⊥ x⊥

∥∥] = ‖x⊥‖σ
√

2
Γ(|A|/2)

Γ((|A| − 1)/2)
≥ ‖x⊥‖σ

√
2(
|A|
2
− 3

4
)1/2. ” (S59)

Proof in (Raghu et al. 2017), Appendix, Lemma 4.
Lemma 10. Norm and Translation (Raghu et al. 2017). ForX being a zero-mean multivariate Gaussian and having a diagonal
covariance matrix, and µ a vector of constants, we have:

E[‖X − µ‖] ≥ E[‖X‖]. (S60)

Proof in (Raghu et al. 2017), Appendix, Lemma 5.

S4.2 Beginning of the proof of Theorem 4
We first establish the lower bound for Neural ODEs and then extend the results to that of CT-RNNs.

Proof. For a successive layer d+ 1 of a Neural ODE the gradient between the states at t+ δt and t, xd+1(t+ δt) and xd+1(t)
is determined by:

dx

dt

(d+1)

= f(h(d)), h(d) = W (d)x(d) + b(d). (S61)

Accordingly, for the latent representation (the first two principle components of the hidden state x(d+1)), which is denoted
by z(d+1)(t), this gradient can be determined by:

dz

dt

(d+1)

= f(h(d)), h(d) = W (d)z(d) + b(d) (S62)

Let us continue with the zero bias case and discuss the non-zero bias case later.

We decompose W (d) in respect to the z(d), as W (d) = W
(d)
‖ + W

(d)
⊥ . For this decomposition, the hidden state h(d+1) =

W
(d)
‖ z(d) as the vertical components maps z(d) to zero.
We determine the set of indices for which the gradient state is not saturated as if f is defined by Hard-tanh activations:

A
W

(d)

‖
= {i : i ∈ [k], |h(d+1)

i | < 1} (S63)

As the decomposition components of W (d) are independent random variables, based on Lemma 9, we can build the expecta-
tion of the gradient state as follows:

EW (d)

[∥∥∥∥∥dzdt (d+1)
∥∥∥∥∥
]

= E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥f(W (d)z(d))
∥∥∥]. (S64)

Now, if we condition on W (d)
‖ , we can replace the right-hand-side norm with the sum over the non-saturated indices, A

W
(d)

‖

as follows:

EW (d)

[∥∥∥∥∥dzdt (d+1)
∥∥∥∥∥
]

= E
W

(d)

‖
E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W

(d)
⊥)i z

(d) + (W
(d)
‖)i z

(d)
)2)1/2]

. (S65)

We need to derive a recurrence for the Eq. S65. To do this, we start a decomposition of the gradient state in respect to z(d) as
dz
dt

(d)
= dz

dt

(d)

‖ + dz
dt

(d)

⊥ .

Now, let d̃zdt
(d+1)

= 1A
W

(d)
‖

h(d+1), be the latent gradient vector of all unsaturated units, and zeroed saturated units. Also we

decompose the column space of the weight matrix in respect to z̃(d+1) as: W (d) = W⊥ (d) + W‖ (d).
Then by definition, we have the following expressions:

dz

dt

(d+1)

⊥
= W (d)z(d)1A − 〈W (d)z(d)1A, ẑ

(d+1)〉ẑ(d+1), .̂ = unit vector (S66)

W⊥ (d)z(d) = W (d)z(d) − 〈W (d)z(d), ˆ̃z(d+1)〉ˆ̃z(d+1) (S67)

Looking at Eq. S66 and Eq. S67, and based on the definitions provided, their right-hand-side are equal to each other for any
i ∈ A. Therefore, their left-hand-sides are equivalent as well. More precisely:

dz

dt

(d+1)

⊥
.1A = W⊥ (d)z(d).1A. (S68)

The statement in Eq. S68 allows us to determine the following inequality, which builds up the first steps for the recurrence:∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥ ≥
∥∥∥∥∥dzdt (d+1)

⊥
.1A

∥∥∥∥∥ (S69)

Now let us return to Eq. S65, and plug in the following decompositions:

dz

dt

(d)

=
dz

dt

(d)

⊥
+
dz

dt

(d)

‖
(S70)

W⊥
(d) = W

‖
⊥

(d) + W⊥ ⊥
(d) W‖

(d) = W
‖
‖

(d) + W⊥ ‖
(d), (S71)

we have:

EW (d)

[∥∥∥∥∥dzdt (d+1)
∥∥∥∥∥
]

= (S72)

E
W

(d)

‖
E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W
‖
⊥

(d) + W⊥ ⊥
(d))i z

(d)
⊥ + (W

‖
‖

(d) + W⊥ ‖
(d))i z

(d)
‖
)2)1/2]

(S73)

Hard-tanh

As stated in Theorem 4, we conditioned the input on its perpendicular components. Therefore, we write the recurrence of the
states also for their perpendicular components by dropping the parallel components, W

‖
⊥

(d) and W
‖
‖

(d), and using Eq. S69
as follows:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ E

W
(d)

‖
E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W⊥ ⊥

(d))i z
(d)
⊥ + (W⊥ ‖

(d))i z
(d)
‖
)2)1/2]

(S74)

The term W⊥ ‖
(d)z

(d)
‖ is constant, as the inner expectation is conditioned on W (d)

‖ . Now by using Lemma 10, we can wirte:

E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W⊥ ⊥

(d))i z
(d)
⊥ + (W⊥ ‖

(d))i z
(d)
‖
)2)1/2]

≥ (S75)

E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W⊥ ⊥

(d))i z
(d)
⊥
)2)1/2]

(S76)

By applying Lemma 9 we get:

E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W⊥ ⊥

(d))i z
(d)
⊥
)2)1/2]

≥ σw√
k

√
2

√
2|A

W
(d)

‖
| − 3

2
E
[∥∥∥z(d)

⊥

∥∥∥]. (S77)

As we selected Hard-tanh activation functions with p = P(|h(d+1)
i | < 1), and the condition |A

W
(d)

‖
| ≥ 2 we have

√
2

√
2|A

W
(d)
‖
|−3

2 ≥ 1√
2

√
|A

W
(d)

‖
|, and therefore we get:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ 1√

2

(
k∑
j=2

(
k
j

)
pj(1− p)k−j σw√

k

√
j

)
E
[∥∥∥z(d)

⊥

∥∥∥] (S78)

Keep in mind that we are referring to |A
W

(d)

‖
| as j. Now we need to bound the

√
j term, by considering the binomial

distribution represented by the sum. Consequently, we can rewrite the sum in Eq. S78 as follows:

k∑
j=2

(
k
j

)
pj(1− p)k−j σw√

k

√
j = −

(
k
1

)
pj(1− p)k−1 σw√

k
+

k∑
j=2

(
k
j

)
pj(1− p)k−j σw√

k

√
j

= −σw
√
kp(1− p)k−1 + kp

σw√
k

k∑
j=2

1√
j

(
k − 1
j − 1

)
pj−1(1− p)k−j︸ ︷︷ ︸

XT

and by utilizing Jensen’s inequality with 1/
√
x, we can simplify XT as follows as it is the expectation of the binomial

distribution (k − 1, p) (Raghu et al. 2017):

k∑
j=2

1√
j

(
k − 1
j − 1

)
pj−1(1− p)k−j ≥ 1√∑k

j=2 j

(
k − 1
j − 1

)
pj−1(1− p)k−j

=
1√

(k − 1)p+ 1

and therefore:

Hard-tanh

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ 1√

2

(
− σw

√
kp(1− p)k−1 + σw

√
kp√

(k − 1)p+ 1

)
E
[∥∥∥z(d)

⊥

∥∥∥] (S79)

Now we need to find a range for p. (Raghu et al. 2017) showed that for Hard-tanh activations, given the fact that h(d+1)
i is a

random variable with variance less than σw, for an input argument |A| ∼ N (0, σ2
w), we can lower bound p = P(|h(d+1)

i | < 1),
as follows:

p = P(|h(d+1)
i | < 1) ≥ P(|A| < 1) ≥ 1√

2πσw
, ∀ σw ≥ 1, (S80)

and find an upper bound equal to 1
σw

(Raghu et al. 2017). Therefore the equation becomes:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ 1√

2

(
− σw

√
k

1

σw
(1− 1

σw
)k−1 + σw

√
k 1√

2πσw√
(k − 1) 1√

2πσw
+ 1

)
E
[∥∥∥z(d)

⊥

∥∥∥] (S81)

and with some simplifications:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ 1√

2

(
−
√
k(1− 1

σw
)k−1 + (2π)−1/4

√
kσw√

(k − 1) +
√

2πσw

)
E
[∥∥∥z(d)

⊥

∥∥∥] (S82)

Now, we want to roll back Eq. S82 to arrive at the inputs. To do this, we replace the expectation term on the right-hand-side
by:

E
[∥∥∥z(d)

⊥

∥∥∥] = E

[∥∥∥∥∥
∫
t

dz

dt

(d)

⊥
dt

∥∥∥∥∥
]

(S83)

Proposition 1. Let f : R→ S, be an integratable function, on Banach space S. Then the following holds:∫
t

‖f(t)‖ dt ≥
∥∥∥∥∫

t

f(t)dt

∥∥∥∥ . (S84)

Proof. let x =
∫
t
f(t)dt ∈ S, and Λ ∈ S∗ with ‖Λ‖ = 1. Then we have:

Λx =

∫
t

Λf(t)dt ≤
∫
t

‖Λ‖S∗ ‖f(t)‖S dt =

∫
t

‖f(t)‖ dt. (S85)

Now based on Hahn-Banach we have: ‖x‖ ≤
∫
t
‖f(t)‖ dt.

Based on Proposition 1 and Eq. S83 we have:

E

[∥∥∥∥∥
∫
t

dz

dt

(d)

⊥
dt

∥∥∥∥∥
]
≥ E

[∫
t

∥∥∥∥∥dzdt (d)

⊥

∥∥∥∥∥ dt
]

= l(z
(d)
⊥ (t)). (S86)

Now by By recursively rolling out the the expression of Eq. S82 to arrive at input, I(t) and denoting c1 = l(I⊥(t))
l(I(t)) , we have:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥

(
1√
2

(
−
√
k(1− 1

σw
)k−1 + (2π)−1/4

√
kσw√

(k − 1) +
√

2πσw

))d
c1l(I(t)) (S87)

Finally, the asymptotic form of the bound, and considering c1 ≈ 1 for input trajectories which are orthogonal to their
successive time-points gives us:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ O

(√
kσw√
k + σw

)d
‖I(t)‖ . (S88)

Hard-tanh

Eq. S88 shows the lower bound for every infinitesimal fraction of the length of the hidden state (in principle components
state, z, for a neural ODE architecture. consequently, the overall trajectory length is bounded by:

E

[
l(z(d)(t))

]
≥ O

(√kσw√
k + σw

)d×L
l(I(t)), (S89)

with L being the number ODE steps. Finally we consider the non-zero bias case:
As stated in the Notations section, network parameters are set by W (d) ∼ N (0, σ2

w/k) and bias vectors as b(d) ∼ N (0, σ2
b).

Therefore, the variance of the h(d+1)
i will be smaller than σ2

w + σ2
b . Therefore we have (Raghu et al. 2017):

p = P(|h(d+1)
i | < 1) ≥ 1√

2π
√
σ2
w + σ2

b

(S90)

By replacing this into Eq. S79, and simplify further we get:

E

[
l(z(d)(t))

]
≥ O

(
σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
l(I(t)), (S91)

the main statement of Theorem 4 for Neural ODEs is obtained.
Deriving the trajectory length lower-bound for CT-RNNs For a successive layer d+1 of a CT-RNN the gradient between

the states at t+ δt and t, xd+1(t+ δt) and xd+1(t) is determined by:

dx

dt

(d+1)

= −w(d+1)
τ x(d+1) + f(h(d)), h(d) = W (d)x(d) + b(d). (S92)

WithW (d+1)
τ standing for the parameter vector 1

τ(d+1) , which is conditioned to be strictly positive. Accordingly, for the latent
representation (the first two principle components of the hidden state x(d+1)), which is denoted by z(d+1)(t), this gradient can
be determined by:

dz

dt

(d+1)

= −W (d+1)
τ z(d+1) + f(h(d)), h(d) = W (d)z(d) + b(d) (S93)

An explicit Euler discretization of this ODE gives us:

z(d+1)(t+ δt) = (1− δtW (d+1)
τ)z(d+1) + δtf(h(d)), h(d) = W (d)z(d) + b(d). (S94)

the same discretization model for Neural ODEs gives us:

z(d+1)(t+ δt) = z(d+1) + δtf(h(d)), h(d) = W (d)z(d) + b(d). (S95)

The difference between the two representations is only a −δtW (d+1)
τ term before z(d+1), which consists of W (d+1)

τ

that is a strictly positive random variable sampled from a folded normal distribution N (|x|;µY , σY), with mean µY =

σ
√

2
π e

(−µ2/2σ2) − µ(1 − 2Φ(µσ)) and variance σ2
Y = µ2 + σ2 − µ2

Y (Tsagris, Beneki, and Hassani 2014). µ and σ are
the mean and variance of the normal distribution over random variable x, and Φ is a normal cumulative distribution function.
For a zero-mean normal distribution with variance of σ2

b , we get:

N (|Wτ |;σb

√
2

π
, (1− 2

π
)σ2
b). (S96)

Accordingly, we approximate the lower-bound for the CT-RNNs, with the simplified asymptotic form of:

E

[
l(z(d)(t))

]
≥ O

(
(σw − σb)

√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
l(I(t)), (S97)

This gives of the statement of the theorem for CT-RNNs.

Proof of Theorem 5
Distribution of parameters of LTCs

The Weight matrix for each layer d of the form W (d) ∼ N (0, σ2
w/k). The bias vectors as b(d) ∼ N (0, σ2

b). The vector
parameter W (d+1)

τ is strictly positive and it is sampled from a folded normal distribution (Tsagris, Beneki, and Hassani 2014)

N (|Wτ |;σb
√

2
π , (1− 2

π)σ2
b). The parameter stands for the inverse of the time-constant of neurons, 1

τ(d+1) The parameter A(d)

is a weight matrix sampled from ∼ N (0, σ2
w/k).

Proof. For a successive layer d+1 of an LTC network, the gradient between the states at t+δt and t, xd+1(t+δt) and xd+1(t)
is determined by:

dx

dt

(d+1)

= −(w(d+1)
τ + f(h(d)))x(d+1) +A(d)f(h(d)), h(d) = W (d)x(d) + b(d). (S98)

Accordingly, for the latent representation (the first two principle components of the hidden state x(d+1)), which is denoted
by z(d+1)(t), this gradient can be determined by:

dz

dt

(d+1)

= −(w(d+1)
τ + f(h(d)))z(d+1) +A(d)f(h(d)), h(d) = W (d)z(d) + b(d). (S99)

We first take the expectation of norms from both side of Eq. S99, while similar to Eq. S64 and based on Lemma 9, we
decompose the expectation over parallel and orthogonal components of the weight matrix W (d) as follows:

EW (d)

[∥∥∥∥∥dzdt (d+1)
∥∥∥∥∥
]

= E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥−(w(d+1)
τ + f(h(d)))z(d+1) +A(d)f(h(d))

∥∥∥]. (S100)

We can now derive the following inequality for the norms of difference versus difference of norms as follows:

EW (d)

[∥∥∥∥∥dzdt (d+1)
∥∥∥∥∥
]

= (S101)

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥A(d)f(h(d) − (w(d+1)
τ + f(h(d)))z(d+1))

∥∥∥] ≥ (S102)

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥A(d)f(h(d))
∥∥∥− ∥∥∥(w(d+1)

τ + f(h(d)))z(d+1)
∥∥∥] ≥ (S103)

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥A(d)f(h(d))
∥∥∥]− E

W
(d)

‖
E
W

(d)
⊥

[∥∥∥(w(d+1)
τ + f(h(d)))z(d+1)

∥∥∥]. (S104)

Let us first focus on the right expression in Eq. S104. The norm can be split into the norm of products, as follows:

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥(w(d+1)
τ + f(h(d)))

∥∥∥∥∥∥z(d+1)
∥∥∥]. (S105)

Now by conditioning the expectations by the following rule E[XY] = E[X]E[Y], we get:

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥(w(d+1)
τ + f(h(d)))

∥∥∥]E[∥∥∥z(d+1)
∥∥∥]. (S106)

We determine the set of indices for which f is not saturated and we assume that it is defined by Hard-tanh activations:

A
W

(d)

‖
= {i : i ∈ [k], |h(d+1)

i | < 1} (S107)

Now, if we condition on W (d)
‖ , we can replace the first norm by the sum over the non-saturated indices, A

W
(d)

‖
as follows:

E
W

(d)

‖
E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W

(d)
⊥ +

w(d+1)
τ

|A|)i z
(d) + (W

(d)
‖ +

w(d+1)
τ

|A|)i z
(d)
)2)1/2]

E
[∥∥z(d+1)

∥∥]. (S108)

In Eq. S108, the term w(d+1)
τ

|A| determines the average effect of the time-constant weights in the computation of each state
which is a constant addition. |A| is the number of non-saturated states. Now by taking similar steps, from Eq. S65 to Eq. S77,
and by applying Lemma 9 to Eq. S108, we have:

Hard-tanh

E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W⊥ ⊥

(d) +
w

(d+1)
τ

|A
W

(d)

‖
|
)i z

(d)
⊥
)2)1/2]

EW (d)

[∥∥∥z(d+1)
∥∥∥] ≥

√√√√σ2
w

k
+

σ2
b

|A
W

(d)

‖
|2
√

2

√
2|A

W
(d)

‖
| − 3

2
E
[∥∥∥z(d)

⊥

∥∥∥]E[∥∥∥z(d+1)
∥∥∥].

(S109)

As we selected Hard-tanh activation functions with p = P(|h(d+1)
i | < 1), and the condition |A

W
(d)

‖
| ≥ 2 we have

√
2

√
2|A

W
(d)
‖
|−3

2 ≥ 1√
2

√
|A

W
(d)

‖
|, and therefore we can simplify further:

E
W

(d)
⊥

[(∑
i∈A

W
(d)
‖

(
(W⊥ ⊥

(d) +
w

(d+1)
τ

|A
W

(d)

‖
|
)i z

(d)
⊥
)2)1/2]

E
[∥∥∥z(d+1)

∥∥∥] ≥
1√
2

√√√√√√√
σ2
w|AW (d)

‖
|

k
+

σ2
b

|A
W

(d)

‖
|︸ ︷︷ ︸

<< 1

E
[∥∥∥z(d)

⊥

∥∥∥] E[∥∥∥z(d+1)
∥∥∥]. (S110)

Finally, we have:

E
W

(d)
⊥

[∥∥∥(w(d+1)
τ + f(h(d)))

∥∥∥]E[∥∥∥z(d+1)
∥∥∥] ≥ 1√

2

σw√
k

√
|A

W
(d)

‖
|E
[∥∥∥z(d)

⊥

∥∥∥] E[∥∥∥z(d+1)
∥∥∥]. (S111)

Now if we take the computational steps from Eq. S78 to S79, we obtain the following:

E
W

(d)
⊥

[∥∥∥(w(d+1)
τ + f(h(d)))

∥∥∥]E[∥∥∥z(d+1)
∥∥∥] ≥

1√
2

(
− σw

√
kp(1− p)k−1 + σw

√
kp√

(k − 1)p+ 1

)
E
[∥∥∥z(d)

⊥

∥∥∥] E[∥∥∥z(d+1)
∥∥∥]. (S112)

As stated before, network parameters are set by W (d) ∼ N (0, σ2
w/k) and bias vectors as b(d) ∼ N (0, σ2

b). Therefore, the
variance of the h(d+1)

i will be smaller than σ2
w + σ2

b . Therefore we have (Raghu et al. 2017):

p = P(|h(d+1)
i | < 1) ≥ 1√

2π
√
σ2
w + σ2

b

(S113)

This will give us the following asymptotic bound for the right expression of Eq. S104 as follows:

E
W

(d)
⊥

[∥∥∥(w(d+1)
τ + f(h(d)))

∥∥∥]E[∥∥∥z(d+1)
∥∥∥] ≥

O

(
σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)
E
[∥∥∥z(d)

⊥

∥∥∥] E[∥∥∥z(d+1)
∥∥∥] (S114)

Now let us work with the Left expression in Eq. S104:

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥A(d)f(h(d))
∥∥∥] (S115)

As A serves as a constant, we can take it out of the norm and the expectations. The resulting expectation of the norm,
precisely expresses a deep neural network f with Hard-tanh activations, for which (Raghu et al. 2017) showed that it can be
bound as follows:

|A(d)|E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥f(h(d))
∥∥∥] ≥ O(σw

√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)
|A(d)|E

[∥∥∥z(d)
⊥

∥∥∥] (S116)

Hard-tanh
Hard-tanh

And since A ∼ N (0, σ2
w), the bound can be computed as follows:

E
W

(d)

‖
E
W

(d)
⊥

[∥∥∥A(d)f(h(d))
∥∥∥] ≥ O(σ2

w

√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)
E
[∥∥∥z(d)

⊥

∥∥∥]. (S117)

Therefore, for the perpendicular compartments of the gradient of the hidden state, we have:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ O

(
σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)
E
[∥∥∥z(d)

⊥

∥∥∥] E[∥∥∥z(d+1)
∥∥∥]+

O

(
σ2
w

√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)
E
[∥∥∥z(d)

⊥

∥∥∥]. (S118)

If we simplify further and considering the fact that we are shaping the recurrence for every infinitesimal δt of the system’s
dynamics, we get the following asymptotic bound:

EW (d)

[∥∥∥∥∥dzdt (d+1)

⊥

∥∥∥∥∥
]
≥ O

(
σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)
E
[∥∥∥z(d)

⊥

∥∥∥] (σw +

∥∥z(d+1)
∥∥

min(δt, L)

)
. (S119)

Now similar as before, by recursively unrolling the n layer neural network f to reach the input, denoting c1 = l(I⊥(t))
l(I(t)) ≈ 1,

and establishing the bound for an input sequence of length T , for a layer d of a network we get:

E

[
l(z(d)(t))

]
≥ O

((σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L(
σw +

∥∥z(d)
∥∥

min(δt, L)

))
l(I(t)). (S120)

Equation S120 gives us the statement of the theorem.

S5 Experimental Setup - Section 6
Here, we describe the experimental setup for the tasks discussed in Tables 3, 4, 5, and 6.

For each experiment we performed a training-validation-test split of 75:10:15 ratio, with the exact ratios depending on the
specific dataset. After each training epoch the validation metric was evaluated. We kept a backup of the network weights of
the configuration that achieved the best validation metric over the whole training process. At the end of the training process,
we restored the backed-up weights and evaluated the network on the test-set. We repeated this procedure for five times with
different weight initializations and reported the mean and standard deviation in Tables 3, 4, 5, and 6. Hyper-parameters are
shown in Table S1.

Each RNN consists of 32 hidden units. As each task requires a different number of output units, the output of the RNNs were
fed through a learnable linear layer to project the output to the required dimension. Note that the objective of our experimental
setup is not to build the best predictive models, but to empirically compare the expressive power and generalization abilities of
various RNN models.

We implemented all RNN models in TensorFlow1.14. For the sake of reproducability, we have submitted all code and data
along with our submission and will make them publicly available upon acceptance.

ODE solvers For simulating the differential equations we used an explicit Euler methods for CT-RNNs, a 4-th order Runge-
Kutta method for the Neural ODE as suggested in (Chen et al. 2018), and our fused ODE solver for LTCs. All ODE solvers
were fixed-step solvers. The time-step is set to 1/6 of the input sampling frequency, i.e., each RNN step consists of 6 ODE
solver steps.

Hand Gesture Segmentation The experiment concerns the temporal segmentation of hand gestures. The dataset consists of
seven recordings of individuals performing a sequence of hand gesticulations (Wagner et al. 2014). The input features at each
time-step are comprised of 32 data points recorded from a motion detection sensor. The output, at each time step, represents
one of the five possible hand gestures; rest position, preparation, stroke, hold, and retraction. The objective is to train a classifier
to detect hand gestures from the motion data.

We cut each of the seven recordings into overlapping sub-sequences of exactly 32 time-steps. We randomly separated all
sub-sequences into non-overlapping training (75%), validation (10%), and test (15%) sets. Input features were normalized to
have zero mean and unit standard deviation. We used the categorical classification accuracy as the performance metric.

TensorFlow 1.14

Room Occupancy The objective is to detect whether a room is occupied by observations recorded from five physical sensor
streams, such as temperature, humidity, and CO2 concentration sensors (Candanedo and Feldheim 2016). Input data and binary
labels are sampled in one-minute long intervals.

The original dataset consists of a pre-defined training and test set. We used the binary classification accuracy as the perfor-
mance metric. We cut the sequences of each of the two sets into a training and test set of overlapping sub-sequences of exactly
32 time-steps. Note that no item from the test set was leaking into the training set during this process. Input features of all
data were normalized by the mean and standard deviation of the training set, such that the training set has zero mean and unit
standard deviation. We select 10% of the training set as the validation set.

Human Activity Recognition This task involves the recognition of human activities, such as walking, sitting, and standing,
from inertial measurements of the user’s smartphone (Anguita et al. 2013). Data consists of recordings from 30 volunteers
performing activities form six possible categories. Input variables are filtered and are pre-processed to obtain a feature column
of 561 items at each time step.

The output variable represents one of six activity categories at each time step. We employed the categorical classification
accuracy as our performance metric. The original data is already split into a training and test set and preprocessed by temporal
filters. The accelerometer and gyroscope sensor data were transformed into 561 features in total at each time step. We aligned
the sequences of the training and test set into overlapping sub-sequences of exactly 32 time-steps. We select 10% of the training
set as the validation set.

Sequential MNIST We also worked with MNIST. While the original MNIST is a computer vision classification problem,
we transform the dataset into a sequence classification task. In particular, each sample is encoded as a 28-dimensional time-
series of length 28. Moreover, we downscale all input feature to the range [0,1]. We exclude 10% of the training set and use it
as our validation set.

Traffic Estimation The objective of this experiment is to predict the hourly westbound traffic volume at the US Interstate
94 highway between Minneapolis and St. Paul. Input features consist of weather data and date information such as local time
and flags indicating the presence of weekends, national, or regional holidays. The output variable represents the hourly traffic
volume.

The original data consists of hourly recordings between October 2012 and October 2018, provided by the Minnesota Depart-
ment of Transportation and OpenWeatherMap. We selected the seven columns of the data as input features: 1. Flag indicating
whether the current day is a holiday, 2. The temperature in Kelvin normalized by annual mean, 3. Amount of rainfall, 4. Amount
of snowfall, 5. Cloud coverage in percent, 6. Flag indicating whether the current day is a weekday, and 7. time of the day pre-
processed by a sine function to avoid the discontinuity at midnight. The output variable was normalized to have zero mean and
unit standard deviation. We used the mean-squared-error as training loss and evaluation metric. We split the data into partially
overlapping sequences lasting 32 hours. We randomly separated all sequences into non-overlapping training (75%), validation
(10%), and test (15%) set.

Power We used the ”Individual household electric power consumption Data Set” from the UCI machine learning repository
(Dua and Graff 2017). Objective of this task is to predict the hourly active power consumption of a household. Input features
are secondary measurement such as the reactive power draw and sub-meterings. Approximately 1.25% of all measurements
are missing, which we overwrite by the most recent measurement of the same feature. We apply a feature-wise whitening
normalization and split the dataset into non-overlapping sub-sequences of length 32 time-steps. The prediction variable (active
power consumption) is also whitened. We use the squared-error as optimization loss and evaluation metric.

Ozone Day Prediction The objective of task is to forecast ozone days, i.e., days when the local ozone concentration exceeds
a critical level. Input features consist of wind, weather, and solar radiation readings.

The original dataset ”Ozone Level Detection Data Set” was taken from the UCI repository (Dua and Graff 2017) consists
of daily data points collected by the Texas Commission on Environmental Quality (TCEQ). We split the 6-years period into
overlapping sequences of 32 days. A day was labeled as ozone day if, for at least 8 hours, the exposure to ozone exceeded
80 parts per billion. Inputs consist of 73 features, including wind, temperature, and solar radiation data. The binary predictor
variable has a prior of 6.31%, i.e., expresses a 1:15 imbalance. For the training procedure, we weighted the cross-entropy loss
at each day, depending on the label. Labels representing an ozone day were assigned 15 times the weight of a non-ozone day.
Moreover, we reported the F1-score instead of standard accuracy (higher score is better).

In roughly 27% of all samples, some of the input features were missing. To not disrupt the continuity of the collected data,
we set all missing features to zero. Note that such zeroing of some input features potentially negatively affects the performance
of our RNN models compared to non-recurrent approaches and filtering out the missing data. Consequently, ensemble methods
and model-based approaches, i.e., methods that leverage domain knowledge (Zhang and Fan 2008), can outperform the end-
to-end RNNs studied in our experiment. We randomly split all sub-sequences into training (75%), validation (10%), and test
(15%) set.

Person Activity - 1st Setting In this setting we used the ”Human Activity” dataset described in (Rubanova, Chen, and
Duvenaud 2019). However, as we use different random seeds for the training-validation-test splitting, and a different input
representation, our results are not transferable directly to those obtained by (Rubanova, Chen, and Duvenaud 2019), in the
current setting.

The dataset consists of 25 recordings of various physical activity of human participants, for instance, among others lying

down, walking, sitting on the ground. The participants were equipped with four different sensors, each sampling at a period of
211 ms.

Similar to (Rubanova, Chen, and Duvenaud 2019), we packed the 11 activity categories into 7 classes. No normalization is
applied to the input features. The 25 sequences were split into partially overlapping sub-sequences of length 32 time-steps.

unlike Rubanova et al. (Rubanova, Chen, and Duvenaud 2019), we represented the input time-series as a 7-dimensional
feature vector, where the first 4 entries specified the sensor ID and the last 3 entries the sensor values. Due to the high sampling
frequency we discarded all timing information.

The results are reported in Table 4.
Person Activity - 2nd Setting We setup a second experimental setup based on the same dataset as the person activity

task above. In contrast to the first setting, we made sure that the training and test sets are equivalent to (Rubanova, Chen, and
Duvenaud 2019) in order to be able to directly compare results. However, we apply the same pre-processing as in our experiment
before. In particular, represent the datasets as irregularly sampled in time and dimension using a padding and masking, which
results in a 24-dimensional input vector. On the other hand, we discard all time information and feed the input data as described
above in the form of a 7-dimensional vector. Note that the data is still the same, just represented in a different format.

Based on the training - test split of (Rubanova, Chen, and Duvenaud 2019) we select 10% of the training set as our validation
set. Moreover, we train our model for 400 epochs and select the epoch checkpoint which achieved the best results on the
validation set. This model is then selected to be tested on the test set provided by (Rubanova, Chen, and Duvenaud 2019).
Results are reported in Table 5.

Half-Cheetah Kinematic modeling This task is inspired by the physics simulation experiment of Chen et al. (Rubanova,
Chen, and Duvenaud 2019), which evaluated how well RNNs are suited to model kinematic dynamics. In our experiment, we
collected 25 rollouts of a pre-trained controller for the HalfCheetah-v2 gym environment (Brockman et al. 2016). Each rollout
is composed of a series of 1000 17-dimensional observation vectors generated by the MuJoCo physics engine (Todorov, Erez,
and Tassa 2012). The task is then to fit the observation space time-series in an autoregressive fashion.To increase the difficulty,
we overwrote 5% of the actions produced by the pre-trained controller by random actions. We split the data into training, test,
and validation sets by a ratio of 2:2:1. Training loss and test metric were mean squared error (MSE). Results were reported in
Table 6.

S6 Hyperparameters and Parameter counts - Tables 3, 4, and 6

Table S1: Hyperparameters used for the experimental evaluations

Parameter Value Description
Number of hidden units 32
Minibatch size 16
Learning rate 0.001 - 0.02
ODE-solver step 1/6 relative to input sampling period
Optimizer Adam (Kingma and Ba 2014)
β1 0.9 Parameter of Adam
β2 0.999 Parameter of Adam
ε̂ 1e-08 Parameter of Adam
BPTT length 32 Backpropagation through time length

in time-steps
Validation evaluation interval 1 Every x-th epoch the validation

metric will be evaluated
Training epochs 200

Table S2: Number of parameters of various RNN model in relation to the RNN width k, the number of hidden layers n, and the
number of decay slots m.

Model Parameter count (asymptotic) Parameter count (exact)

CT-RNN O(nk2) nk2 + 2nk
ODE-RNN O(nk2) nk2 + nk
LSTM O(nk2) 4nk2 + 4nk
CT-GRU O(mk2) 2mk2 + 2mk + k2 + k
LTC O(nk2) 4nk2 + 3nk

S7 Additional trajectory space representations:
Trajectory space representation for the results provided can be viewed at: https://www.dropbox.com/s/ly6my34mbvsfi6k/
additional LTC neurIPS 2020.zip?dl=0

S8 Trajectory Length results

L1 L2 L3 L4
Network Layers

102

104

106

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
solver = RK45
activations = Htanh
depth = 4, width = 25

2
w = 2, 2

b = 1

10 25 50 100 150 200
Network Width (k)

102

104

106

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100, solver = RK45
activations = Htanh
depth = 1, 2

w = 2, 2
b = 1

10 25 50 100 150 200
Network Width (k)

100

101

102

103

104

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
solver = RK45
activations = sigmoid
depth = 1, 2

w = 2, 2
b = 1

1 2 4 8 16 32

w
2

101

102

103

104

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
solver = RK45
activations = Htanh
depth = 1, 2

b = 1

0.1 0.2 0.02 0.01 0.001
Input step-size

102

103

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
solver = RK45
activations = Htanh
depth = 1, width = 25

2
w = 2, 2

b = 1

Figure S1: Additional trajectory length results.

S9 Code and Data availability
All code and data are publicly accessible at: https://github.com/raminmh/liquid time constant networks.

https://www.dropbox.com/s/ly6my34mbvsfi6k/additional_LTC_neurIPS_2020.zip?dl=0
https://www.dropbox.com/s/ly6my34mbvsfi6k/additional_LTC_neurIPS_2020.zip?dl=0
https://github.com/raminmh/liquid_time_constant_networks

